BlastMetriX 3D
Bench face surveying and blast planning using 3D images
CONTENTS

1. WHAT'S IT ABOUT? ... 3

2. OVERVIEW .. 4

3. HOW TO PLAN AN OPTIMAL SHOT WITH BLASTMETRIX 3D .. 5

4. BLASTMETRIX 3D DETAILS.. 6
 4.1 3D image generation .. 6
 4.2 Planning an optimal blast ... 9
 4.3 Results .. 10
 4.4 Import of borehole probe data .. 12
 4.5 Profiles vs. Minimum burden diagrams ... 12
 4.6 Uneven crest .. 14
 4.7 Blast site volume ... 15
 4.8 Economic impacts ... 15

5. SCOPE OF DELIVERY .. 16
 5.1 BlastMetriX 3D hardware components ... 16
 5.2 BlastMetriX 3D software components .. 17
 5.3 Updates and support .. 18
 5.4 BlastMetriX 3D shipping packages ... 19

6. SPECIFICATIONS ... 20
1 What’s it about?

“We need safety and efficiency in mining operations!”

One of the fundamental problems in surface blasting is the lack of accurate knowledge on the geometry of the bench face and the blast site. Consequences are excessive vibrations, fly-rock, hard digging, boulders, bench damage, air blast, non-uniform fragmentation, higher strip mining costs, poor crusher throughput, or simply wasting money during every day of production.

Based on 3GSM’s technology for generating 3D images from freehand taken photos, the University of Leoben, Mineral Abbau GmbH, and 3GSM GmbH formed a joint venture in 2004. The goal was to develop a surveying system that provides a quick, easy, comprehensive, and effective acquisition of bench faces and allows for improved blast planning.

The result is called BlastMetriX 3D and it fulfills these requirements and overcomes abovementioned drawbacks.

BlastMetriX 3D

- increases working safety (by contact-free measurements)
- allows optimised loading and thus more economic blasting (reports on reduced production costs exist)
- provides a reproducible documentation of the excavation works by the 3D image (conservation of evidence) unachievable by other surveying technologies without images
- allows blast planning and estimation of the geologic conditions in one step

The system received several awards due to its innovative strength and quality.

The major distinctions to conventional surveying are:

1. A 3D image describes a surface accurately by a real image plus several hundreds of thousands of 3D measurements.
2. A 3D image clearly shows the actual geological conditions of a bench face.
3. Data acquisition is fast.
4. No special surveying skills or instrumentation are required.

The major distinctions to other 3D measurement technologies:

1. Very fast data collection on site
2. No bulky, expensive hardware
3. Objective and reproducible documentation of the rock mass conditions
4. System also works when it’s raining or snowing

3GSM – Simply Measure!
2 Overview

The basic components of BlastMetriX 3D are: (i) an imaging system, (ii) marking elements, and (iii) software components (see Figure 1).

Figure 1: Components of the BlastMetriX 3D system. The camera is pre-calibrated for ensuring accurate measurements and it is stored in a protection case.

Figure 2: BlastMetriX 3D principle: From a set of photos (1) a 3D image is computed (2); burden information over the whole area (3) is used to adapt the drill layout according to the actual bench face geometry; the results are profiles, minimum burden diagrams, and a drill pattern (4).
How to plan an optimal shot with BlastMetriX 3D

The application of the system with the most value to the customer follows the following procedure:

1. Establish marking elements in the area to survey
2. Take two or more pictures with the calibrated camera from slightly different locations (stereoscopic image pair)
3. Optional: Survey the location of the marking elements, e.g. by total station or accurate GPS; only if geo-referenced surveys are required.
4. Compute a three-dimensional image using the BMX Reconstructor software
5. Specify intended drill pattern
6. Check the resulting burden situation with the capabilities of the BMX BlastPlanner software
7. Relocate holes to fit geometric irregularities of the bench face with instant graphical update to burden information; consider in additional the visual assessment of bench face quality → optimised blast site
8. Print the result and stake out the planned (optimised) drill pattern
9. Drill the layout
10. Optional: check the location of the drilled boreholes and update the planning
11. Optional: check the deviations of the drilled boreholes using down-the-hole probes and update the planning
12. Optional: do a comparative 3D image (if bench face might have changed between first survey and loading time) and update the planning
13. Use final profiles including minimum burden diagrams, sectional areas, etc. for the loading
14. Get an optimal shot
4 BlastMetriX 3D details

4.1 3D image generation

The principle behind BlastMetriX 3D for getting three-dimensional information is digital photogrammetry enhanced by modern algorithms from computer vision. The implemented modern algorithms allow the use of an off the shelf digital camera equipped with zoom lens and freehand application without any external surveying. The results are so-called 3D images.

A 3D image is a digital photo combined with spatial information on the objects/surfaces it shows.

The generation of a 3D image is supported by software components that guide through the whole reconstruction process. Once all boundary conditions are defined by the operator, the 3D image is computed automatically.

Figure 3 schematically shows how three-dimensional measurements are gained from a stereoscopic image pair. A crucial step is the automatic identification of corresponding points within the image pair. Note that the photos show the same part of a rock face since measurements are only possible in those regions.

Figure 3: Generation of a 3D image: from a pair of photos taken from different angles the geometry of the observed surface is automatically reconstructed. Modern algorithms do not need knowledge on the baseline or camera locations.
Practical applications often involve dealing with larger areas or complex shapes (corners) which goes beyond the visible information available from a single stereoscopic image pair. In such cases, the rock wall is acquired by several overlapping 3D images. With the BMX ModelMerger software component they are automatically aligned to a larger 3D model based on common structural and topographic information in the overlapping area of the 3D images (see Figure 5). Figure 6 and Figure 7 show merged 3D images of a long bench face and a blast site with two free faces, respectively.

Figure 4: The typical working range for a single 3D image

Figure 5: Several overlapping 3D images (top) and merged result (bottom). All pictures were taken freehand without surveying any camera station.
Figure 6: Merged 3D image at a blast site with a long bench face. Single overlapping patches and camera positions (top). Resulting 3D image (bottom).

Figure 7: Merged 3D image at blast site with two free faces (corner). Single overlapping patches and camera positions (top). Resulting 3D image (bottom).
4.2 Planning an optimal blast

Once the 3D image of a bench face is ready the planning of the blast is performed using the BMX BlastPlanner software.

By entering basic geometric parameters such as burden, spacing, or inclination of the boreholes the system places them accordingly. Each borehole gets a profile as well as the sectional area, and the minimum burden diagram.

The determined borehole locations are visualised three-dimensionally as well as in plan view.

Figure 8: 3D image of a bench face around a corner together with planned boreholes and visualised profiles. The 3D image allows for a visual assessment of the rock mass quality, e.g. identification of higher fractured areas or potential weaker zones.

Figure 9: A (configurable) colour coded visualization of burden over the entire bench face facilitates the identification of light burden zones (red).

The relocation of single boreholes according to the actual bench face geometry is the key step in the optimisation procedure. The optimisation effects become even more evident for irregular shaped bench faces that include cavities, weak zones, or at free ends and corners.
However, usually the front row is adapted to the actual geometry and any additional rows are kept in line in order to end up with a well-controlled bench face after the blast. Any changed hole instantly updates burden information both within profiles but also for the colourised burden visualisation over the entire face. Hence relocating holes to an optimal layout becomes a straightforward procedure.

![Figure 10: Drill pattern with minimum burden diagram of the active borehole together with geometrical parameters such as drilling length, position, etc. Every borehole can be individually relocated, re-inclined, or turned according to the actual burden situation shown by profiles, minimum burden diagrams, and the coloured burden information over the entire face.](image)

4.3 Results

Once the blast site is planned the following results are instantly available:

- Basic geometry of the bench face such as height, width, or mean inclination
- Suggestion for mean borehole inclination based on identified bench face inclination
- Profile and sectional area in front of each shot hole
- Minimum burden diagram for each hole
- Burden information over the entire face (see Figure 12)
- Drill pattern in form of a scaled plan view (see Figure 13)
- 3D image as natural, self-explaining documentation of the bench face (see Figure 11)
- Volume of the entire blast site and each row
Figure 11: 3D image of a bench face

Figure 12: Burden information over the entire face

Figure 13: Plan view
4.4 Import of borehole probe data
The complete geometry of a blast site includes the geometry of the bench face and the boreholes. To ensure the validity of planning the real location of the shot hole collars as well as the trajectory of the holes must be surveyed.

Results from borehole deviation probes are imported into the BlastMetriX 3D software which updates the blast site and the burden information accordingly. BlastMetriX 3D supports established borehole deviation probes.

4.5 Profiles vs. Minimum burden diagrams
Profiles are generated by intersection of a plane and the free surface of the bench. Consequently, a profile does not necessarily show the shortest distance from the borehole to the surface.

A minimum burden diagram plots this shortest distance from a search in any spatial direction, i.e. spherically around any location of the borehole.

However, loading of the holes shall base on the minimum burden information.

For irregular bench faces containing cavities, at free-ends, or corners a significant disparity between the profile and the according minimum burden diagram may occur (see Figure 16).

Fly rock often occurs in conjunction with overestimated burden – a minimum burden diagram visualises the crucial information to that. Pure profiles might hide light burden situations even when several adjacent profiles are taken into account.

Figure 14: Profile as it occurs from intersecting a plane with the bench face.
Figure 15: The minimum burden diagram provides the shortest distance to surface regardless in which spatial direction. The locations on the surface where minimum burden occurs (orange dots) might significantly deviate from where the profile appears.

Figure 16: The profile and minimum burden diagram for the same shot hole show discrepancies. A profile might overestimate the real burden situation significantly.
4.6 Uneven crest

BlastMetriX 3D allows considering an uneven crest by using so-called top level surface markers. They are placed along the crest line in a way that they are visible in the stereoscopic image pairs. Natural markers such as monuments might also be used though automatic target centring is then not supported. Furthermore, surveyed terrain points at the crest are importable in order to refine the shape of the top level surface. Planned and imported boreholes follow the top level surface (see Figure 17).

Figure 17: 3D image with enabled top level surface modelling an uneven crest.
4.7 Blast site volume
BlastMetriX 3D provides the bank volume of the blast site based the current drill pattern. A key property of this approach is that it handles irregular drill patterns without problems. It works also if the boreholes are surveyed with a down-the-hole probe.

![3D images of a blast site with two free faces, a corresponding drill pattern, and the estimated volume to blast.](image)

4.8 Economic impacts
Optimised blast sites lead to more efficiency. In the following some exemplary figures are given showing the savings of one particular customer achieved through an optimisation procedure including the use of BlastMetriX 3D. No 3GSM personnel were involved in the study at any phase. The found results include:

- Increase of the regular drilling geometry by 15% (burden and spacing)
- Reduction of the manpower for drilling by approx. 10%
- Better fragmentation judged by visual estimation
- Less costs for strip mining service (less reduction of boulders)
- Decrease of specific explosives consumption by 9%
- Decrease of electricity consumption in the crusher by 16%
- Increase of crusher throughput by 8%
5 Scope of delivery

5.1 BlastMetriX 3D hardware components

See also Figure 19.

BMX Imaging System

- Canon EOS 80D digital SLR (single lens reflex) camera with 24.2 Megapixel, calibrated (or equivalent)
- Tamron 17-50 mm zoom lens, calibrated (or equivalent)
- Canon 10-22 mm wide angle zoom lens, calibrated (or equivalent)
- 2 delimiters with one target disc Ø 35 cm each
- 2 range poles with two target discs Ø 25 cm each
- 5 top level surface markers with one target disc Ø 28 cm each
- Delivered in watertight, dustproof case (camera) and carrying bags (delimiters, range poles)

Figure 19: Camera in case (left), range pole (middle), top level surface marker (right top), delimiter (right bottom).
BMX ImagingSystem Basic

- Canon EOS 760D digital SLR (single lens reflex) camera with 24.2 Megapixel, calibrated (or equivalent)
- Tamron 17-50 mm zoom lens, calibrated (or equivalent)
- 2 delimiters with one target disc Ø 35 cm each
- 2 range poles with two target discs Ø 25 cm each
- Delivered in watertight, dustproof case (camera) and carrying bags (delimiters, range poles)

Notebook computer

A proper computer system ensures system performance (3D graphics) and eases support. Installation of software and updates requires administrator privileges. The minimum specifications are:

- **Operating System:** Windows 10 Pro 64-bit, Windows 8.1 Pro 64-bit
 Windows 8 Pro 64-bit, Windows 7 Professional 64-bit
- **CPU speed:** Intel Core i5, 2 processing cores or more, 2.5 GHz or more
- **System Memory (RAM):** 8 GB
- **Storage:** 64 GB hard-disk space
- **3D graphics card:** 3D-capable video card with 256 MB VRAM or more supporting OpenGL and hardware texturing;
 no onboard graphics chips
- **Display:** 1024x768, 32-bit colour screen

5.2 BlastMetriX 3D software components

BMX Reconstructor

Software for generating metric (scaled) 3D images from photos taken with the BMX ImagingSystem comprising the components: **BMX ReconstructionAssistant, BMX SurfaceTrimmer, BMX Referencer** and **BMX BlastSiteGenerator**. The resulting 3D image is a comprehensive documentation of the blast site.

BMX BlastPlanner

Software for the geometric planning of a blast in context with a 3D image of the according bench face. The software provides among others the geometry of the bench face (exportable as DXF), profiles and minimum burden at arbitrary locations, minimum burden distribution over the bench face, cross sectional areas per borehole, blast site volume as well as a drilling plan and report. The blast site features uneven crest, and planar floor and ramp design. The 3D image itself represents a comprehensive documentation of the blast site. The software is compatible to borehole probe data.
BMX ModelMerger

Software for merging several 3D images into one larger 3D model. The component can merge up to twelve 3D images into one model which is used to acquire large blast sites or complex shapes (e.g. free corners). The software smoothly interacts with the BMX Reconstructor and BMX BlastPlanner software components.

BMX Reconstructor Basic

Software for generating metric (scaled) 3D images from photos taken with the BMX ImagingSystem comprising the components: *BMX ReconstructionAssistant*, *BMX SurfaceTrimmer*, and *BMX BlastSiteGenerator Basic*. The resulting 3D image is a comprehensive documentation of the blast site.

BMX BlastPlanner Basic

Software for the geometric planning of a blast in context with a 3D image of the according bench face. The software provides among others the geometry of the bench face (exportable as DXF), profiles, cross sectional areas per borehole, as well as a drilling plan. The 3D image itself represents a comprehensive documentation of the blast site. BMX BlastPlanner Basic is a variant of BMX BlastPlanner.

BMX ModelMerger Basic

Software for merging several 3D images into one larger 3D model. The component can merge up to three 3D images into one model. The software smoothly interacts with the BMX Reconstructor and BMX BlastPlanner software components.

5.3 Updates and support

Updates of the BlastMetriX 3D software are provided via 3GSM’s webpage under www.3gsm.at. Data for performing support for a single survey is also transferred via this webpage.

With an active service and update license (SU license) 3GSM helps via telephone, email and remote desktop support (webmeeting), and provides software update for free. The SU license is included for one year after purchase for the package BlastMetriX 3D Supreme.
5.4 BlastMetriX 3D shipping packages

There are two pre-configured packages related to the BlastMetriX3D system.

BlastMetriX 3D Supreme is the comprehensive, “ready to go” bench face surveying system

The package includes:
- BMX ImagingSystem
- BMX Reconstructor Software
- BMX BlastPlanner Software
- BMX ModelMerger Software
- SU License BMX: Service and Updates for one year

BlastMetriX 3D Basic is the entry-level bench face surveying system.

It includes:
- BMX ImagingSystem *Basic*
- BMX Reconstructor *Basic* Software
- BMX BlastPlanner *Basic* Software
- BMX ModelMerger *Basic* Software

FEATURES

<table>
<thead>
<tr>
<th>Hardware</th>
<th>Software</th>
<th>3D image generation</th>
<th>Report</th>
<th>Profile</th>
<th>Row management</th>
<th>Burden colour overlay</th>
<th>Minimum burden diagram</th>
<th>Top level surface</th>
<th>External collar points</th>
<th>Down-the-hole probes</th>
<th>Volume</th>
<th>Service and update license</th>
<th>Georeferencing</th>
<th>Model merging</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supreme</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Canon EOS 80D</td>
<td>Canon EOS 760D</td>
<td></td>
</tr>
<tr>
<td>Tamron 17-50</td>
<td>Tamron 17-50</td>
<td></td>
</tr>
<tr>
<td>Canon 10-22</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2 Range poles</td>
<td>2 Range poles</td>
<td></td>
</tr>
<tr>
<td>2 Delimiters</td>
<td>2 Delimiters</td>
<td></td>
</tr>
<tr>
<td>5 TLS markers</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

BlastMetriX 3D *Basic* can be upgraded for georeferenced measurements through inclusion of the 3D registration software BMX Referencer, and to full model merging capabilities.

Any BlastMetriX 3D can be upgraded to a geotechnical mapping system through inclusion of the 3D mapping software component JMX Analyst.

For individual configurations contact 3GSM at office@3gsm.at or your service partner.
6 Specifications

Data acquisition

| Working range | Bench face size: 80 m (width), 55 m (height) (standard)
Larger areas using the BMX ModelMerger option |
|----------------|--|
| Imaging distance | 10 m -150 m (standard)
Up to 750 m with telephoto lens (on request – special configuration) |

Hardware

| Camera | Canon EOS 80D, 24.2 Megapixel SLR camera (by July 2017)
Canon EOS 760D, 24.2 Megapixel SLR camera (by July 2017)
shipped in watertight dust-proof protection case
other models on request |
|----------------|--|
| Camera calibration | Camera is calibrated on delivery.
Time cycle between recalibrations depends on camera treatment;
suggested: 12 months |
Range pole	Scaling element consisting of a bipod, a pole with a spirit level and two signal discs mounted at known distance
Delimiter	Marking element consisting of a tripod, a pole with a spirit level, and a single signal disc
Top level surface marker	Marking element consisting of a plastic cone and one signal disc at known height

Application

<table>
<thead>
<tr>
<th>Measuring principle</th>
<th>3D images generated by photogrammetric and enhanced computer vision algorithms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blast planning</td>
<td>Purpose made BMX BlastPlanner software; includes 3D representation and navigation, various possibilities to optimise the drill pattern according to the bench face geometry, import of borehole survey data, volume calculation</td>
</tr>
</tbody>
</table>
| Results | 3D images in local or geo-referenced co-ordinates
Printable report (PDF) with scaled plan view, profiles, minimum burden diagrams
3D images are conveyable to third party using free BMX Inspector software |
<table>
<thead>
<tr>
<th>Time need</th>
<th>The time need from taking the photos, generating the 3D image, optimising the layout, and generating the report including the borehole plan is less than 2 hours (typ.).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geo-referencing</td>
<td>Requires at least 3 control points (points with surveyed co-ordinates) in the imaging area. Alternatively two camera stations and one reference point in the imaging area can be used.</td>
</tr>
<tr>
<td>North-referencing</td>
<td>Exists inherently when using reference points. Alternatively, the azimuth of the reference line (connection between delimiters) is used to reference a bench face to north without needing surveyed points.</td>
</tr>
<tr>
<td>Accuracy</td>
<td>cm range for typical applications in the standard working range.</td>
</tr>
<tr>
<td>Unit format</td>
<td>Configurable to m, mm, feet, inch.</td>
</tr>
<tr>
<td>Data formats</td>
<td>3D image: proprietary data format containing geometry and visual data, as well as all information on 3D image generation. Blast site: proprietary XML style file containing all blast site related information.</td>
</tr>
<tr>
<td>Data export</td>
<td>DXF, CSV</td>
</tr>
<tr>
<td>Languages</td>
<td>English, German, Russian. Other languages on request.</td>
</tr>
</tbody>
</table>

Subject to change without notice

The system received several awards due to its innovative strength and quality.